References

  1. Elliott M. The global elements of vital signs’ assessment: a guide for clinical practice. Br J Nurs Mark Allen Publ. 2021;30(16):956-962. doi:10.12968/bjon.2021.30.16.956

  2. Casadei K, Kiel J. Anthropometric Measurement. In: StatPearls. StatPearls Publishing; 2025. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK537315/

  3. Pleasants RA, Rivera MP, Tilley SL, Bhatt SP. Both Duration and Pack-Years of Tobacco Smoking Should Be Used for Clinical Practice and Research. Ann Am Thorac Soc. 2020;17(7):804-806. doi:10.1513/AnnalsATS.202002-133VP

  4. Holmes CJ, Racette SB. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients. 2021;13(8):2493. doi:10.3390/nu13082493

  5. Pleasants RA, Rivera MP, Tilley SL, Bhatt SP. Both Duration and Pack-Years of Tobacco Smoking Should Be Used for Clinical Practice and Research. Ann Am Thorac Soc. 2020;17(7):804-806. doi:10.1513/AnnalsATS.202002-133VP

  6. History of tobacco and health - MUSK - 2003 - Respirology - Wiley Online Library. Accessed November 6, 2025. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1440-1843.2003.00483.x?sid=nlm%3Apubmed

  7. Muscogiuri G, Verde L, Colao A. Body Mass Index (BMI): Still be used? Eur J Intern Med. 2023;117:50-51. doi:10.1016/j.ejim.2023.09.002

  8. 2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines | Hypertension. Accessed November 6, 2025. https://www.ahajournals.org/doi/10.1161/HYP.0000000000000249#sec-6

  9. Olshansky B, Ricci F, Fedorowski A. Importance of resting heart rate. Trends Cardiovasc Med. 2023;33(8):502-515. doi:10.1016/j.tcm.2022.05.006

  10. Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020;16(3):177-189. doi:10.1038/s41574-019-0310-7

  11. Waist and Hip Measurement.

  12. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85(1009):1-10. doi:10.1259/bjr/38447238

  13. Bosomworth NJ. Normal-weight central obesity. Can Fam Physician. 2019;65(6):399-408.

  14. Gómez-Ambrosi J, Silva C, Galofré JC, et al. Body Adiposity and Type 2 Diabetes: Increased Risk With a High Body Fat Percentage Even Having a Normal BMI. Obesity. 2011;19(7):1439-1444. doi:10.1038/oby.2011.36

  15. Celis-Morales CA, Welsh P, Lyall DM, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ. 2018;361:k1651. doi:10.1136/bmj.k1651

  16. Esteban‐Cornejo I, Ho FK, Petermann‐Rocha F, et al. Handgrip strength and all‐cause dementia incidence and mortality: findings from the UK Biobank prospective cohort study. J Cachexia Sarcopenia Muscle. 2022;13(3):1514-1525. doi:10.1002/jcsm.12857

  17. Wilson PWF, Jacobson TA, Martin SS, et al. Lipid measurements in the management of cardiovascular diseases: Practical recommendations a scientific statement from the national lipid association writing group. J Clin Lipidol. 2021;15(5):629-648. doi:10.1016/j.jacl.2021.09.046

  18. Linton MF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. In: Feingold KR, Ahmed SF, Anawalt B, et al., eds. Endotext. MDText.com, Inc.; 2000. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK343489/

  19. Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41(24):2313-2330. doi:10.1093/eurheartj/ehz962

  20. Reyes-Soffer G, Ginsberg HN, Berglund L, et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42(1):e48-e60. doi:10.1161/ATV.0000000000000147

  21. An Update on Lipoprotein(a): The Latest on Testing, Treatment, and Guideline Recommendations. American College of Cardiology. Accessed November 6, 2025. https://www.acc.org/latest-in-cardiology/articles/2023/09/19/10/54/http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2farticles%2f2023%2f09%2f19%2f10%2f54%2fan-update-on-lipoprotein-a

  22. Kang H, Song J, Cheng Y. HDL regulates the risk of cardiometabolic and inflammatory-related diseases: Focusing on cholesterol efflux capacity. Int Immunopharmacol. 2024;138:112622. doi:10.1016/j.intimp.2024.112622

  23. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99-109c. doi:10.1093/eurheartj/ehz785

  24. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the Risk of Coronary Heart Disease. Circulation. 2007;115(4):450-458. doi:10.1161/CIRCULATIONAHA.106.637793

  25. Jørgensen AB, Frikke-Schmidt R, West AS, Grande P, Nordestgaard BG, Tybjærg-Hansen A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur Heart J. 2013;34(24):1826-1833. doi:10.1093/eurheartj/ehs431

  26. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease | Circulation Research. Accessed November 6, 2025. https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.115.306249?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

  27. Soffer DE, Marston NA, Maki KC, et al. Role of apolipoprotein B in the clinical management of cardiovascular risk in adults: An Expert Clinical Consensus from the National Lipid Association. J Clin Lipidol. 2024;18(5):e647-e663. doi:10.1016/j.jacl.2024.08.013

  28. Zubiran R, Remaley AT. Current opinions on the role of apolipoprotein B in the clinical management of cardiovascular risk. Future Cardiol. Published online July 16, 2025:1-3. doi:10.1080/14796678.2025.2535184

  29. Xiao L, Zhang K, Wang F, et al. The LDL-C/ApoB ratio predicts cardiovascular and all-cause mortality in the general population. Lipids Health Dis. 2023;22(1):104. doi:10.1186/s12944-023-01869-1

  30. Silbernagel G, Scharnagl H, Saely CH, et al. The LDL Apolipoprotein B-to-LDL Cholesterol Ratio: Association with Cardiovascular Mortality and a Biomarker of Small, Dense LDLs. Biomedicines. 2022;10(6):1302. doi:10.3390/biomedicines10061302

  31. Comprehensive Metabolic Panel (CMP): MedlinePlus Medical Test. Accessed November 6, 2025. https://medlineplus.gov/lab-tests/comprehensive-metabolic-panel-cmp/

  32. Haarhaus M, Cianciolo G, Barbuto S, et al. Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients. 2022;14(10):2124. doi:10.3390/nu14102124

  33. Lala V, Zubair M, Minter DA. Liver Function Tests. In: StatPearls. StatPearls Publishing; 2025. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK482489/

  34. Diagnosis of Metabolic Dysfunction -Associated Steatotic Liver Disease (MASLD) at Risk for Advanced Fibrosis in a Real-World Primary Care Setting: A Cross-Sectional Study | Journal of General Internal Medicine. Accessed November 6, 2025. https://link.springer.com/article/10.1007/s11606-025-09659-4

  35. Shaikh SM, Varma A, Kumar S, Acharya S, Patil R. Navigating Disease Management: A Comprehensive Review of the De Ritis Ratio in Clinical Medicine. Cureus. 16(7):e64447. doi:10.7759/cureus.64447

  36. Gremese E, Bruno D, Varriano V, Perniola S, Petricca L, Ferraccioli G. Serum Albumin Levels: A Biomarker to Be Repurposed in Different Disease Settings in Clinical Practice. J Clin Med. 2023;12(18):6017. doi:10.3390/jcm12186017

  37. Ávila M, Mora Sánchez MG, Bernal Amador AS, Paniagua R. The Metabolism of Creatinine and Its Usefulness to Evaluate Kidney Function and Body Composition in Clinical Practice. Biomolecules. 2025;15(1):41. doi:10.3390/biom15010041

  38. Kashani K, Rosner MH, Ostermann M. Creatinine: From physiology to clinical application. Eur J Intern Med. 2020;72:9-14. doi:10.1016/j.ejim.2019.10.025

  39. Li J, Liu C, Ang TFA, Au R. Associations of Mid- and Late-Life Fasting Blood Glucose Levels With Dementia Risk Among Patients With Diabetes: Framingham Heart Study. Eur J Neurol. 2025;32(2):e70062. doi:10.1111/ene.70062

  40. Lin CL, Chien WC, Lin CP, Chung CH, Wu FL. Poor glycemic status as a risk factor for dementia in type 2 diabetes population: Findings from the Taiwan’s National Health Insurance Database. Diabetes Res Clin Pract. 2025;222:112065. doi:10.1016/j.diabres.2025.112065

  41. Schwartz SS, Herman ME, Tun MTH, Barone E, Butterfield DA. The double life of glucose metabolism: brain health, glycemic homeostasis, and your patients with type 2 diabetes. BMC Med. 2024;22(1):582. doi:10.1186/s12916-024-03763-8

  42. Sun J, Tu X, Wang S, et al. Association between the American heart association’s life’s essential 8 score and cognitive function: a cross-sectional NHANES study. BMC Geriatr. 2025;25(1):435. doi:10.1186/s12877-025-05917-6

  43. Lee JY, Han K, Kim J, Lim JS, Cheon DY, Lee M. Association Between Metabolic Syndrome and Young-Onset Dementia: A Nationwide Population-Based Study. Neurology. 2025;104(10):e213599. doi:10.1212/WNL.0000000000213599

  44. Eyth E, Zubair M, Naik R. Hemoglobin A1C. In: StatPearls. StatPearls Publishing; 2025. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK549816/

  45. Butalia S, Chu LM, Dover DC, et al. Association Between Hemoglobin A1c and Development of Cardiovascular Disease in Canadian Men and Women Without Diabetes at Baseline: A Population‐Based Study of 608 474 Adults. J Am Heart Assoc. 2024;13(9):e031095. doi:10.1161/JAHA.123.031095

  46. Sandler CN, McDonnell ME. The role of hemoglobin A1c in the assessment of diabetes and cardiovascular risk. Cleve Clin J Med. 2016;83(5 suppl 1):S4-S10. doi:10.3949/ccjm.83.s1.02

  47. Cho S, Kim CO, Cha B soo, et al. The effects of long-term cumulative HbA1c exposure on the development and onset time of dementia in the patients with type 2 diabetes mellitus: Hospital based retrospective study (2005 -2021). Diabetes Res Clin Pract. 2023;201. doi:10.1016/j.diabres.2023.110721

  48. Miyake T, Furukawa S, Matsuura B, et al. Glycemic Control Is Associated with Histological Findings of Nonalcoholic Fatty Liver Disease. Diabetes Metab J. 2024;48(3):440-448. doi:10.4093/dmj.2023.0200

  49. Waheed Y, Yang F, Sun D. Role of asymptomatic hyperuricemia in the progression of chronic kidney disease and cardiovascular disease. Korean J Intern Med. 2021;36(6):1281-1293. doi:10.3904/kjim.2020.340

  50. Levey P discussant: AS. Measurement of renal function in chronic renal disease. Kidney Int. 1990;38(1):167-184. doi:10.1038/ki.1990.182

  51. Pearson TA, Mensah GA, Alexander RW, et al. Markers of Inflammation and Cardiovascular Disease. Circulation. 2003;107(3):499-511. doi:10.1161/01.CIR.0000052939.59093.45

  52. Delgado C, Baweja M, Crews DC, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2022;79(2):268-288.e1. doi:10.1053/j.ajkd.2021.08.003

  53. Inker LA, Eneanya ND, Coresh J, et al. New Creatinine- and Cystatin C -Based Equations to Estimate GFR without Race. N Engl J Med. 2021;385(19):1737-1749. doi:10.1056/NEJMoa2102953

  54. Gamma-Glutamyl Transferase | Arteriosclerosis, Thrombosis, and Vascular Biology. Accessed November 6, 2025. https://www.ahajournals.org/doi/10.1161/01.ATV.0000253905.13219.4b?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

  55. Hartl L, Schwarz M, Simbrunner B, et al. Insulin-like growth factor-1 in cirrhosis is linked to hepatic dysfunction and fibrogenesis and predicts liver-related mortality. Aliment Pharmacol Ther. 2025;61(1):88-98. doi:10.1111/apt.18289

  56. Adamek A, Kasprzak A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int J Mol Sci. 2018;19(5):1308. doi:10.3390/ijms19051308

  57. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med. 2016;14:3. doi:10.1186/s12967-015-0762-z

  58. Sun J, Axelsson J, Machowska A, et al. Biomarkers of Cardiovascular Disease and Mortality Risk in Patients with Advanced CKD. Clin J Am Soc Nephrol CJASN. 2016;11(7):1163-1172. doi:10.2215/CJN.10441015

  59. Castro-Diehl C, Ehrbar R, Obas V, Oh A, Vasan RS, Xanthakis V. Biomarkers representing key aging-related biological pathways are associated with subclinical atherosclerosis and all-cause mortality: The Framingham Study. PLoS ONE. 2021;16(5):e0251308. doi:10.1371/journal.pone.0251308

  60. Thaler MA, Seifert-Klauss V, Luppa PB. The biomarker sex hormone-binding globulin - From established applications to emerging trends in clinical medicine. Best Pract Res Clin Endocrinol Metab. 2015;29(5):749-760. doi:10.1016/j.beem.2015.06.005

  61. Testosterone: a metabolic hormone in health and disease in: Journal of Endocrinology Volume 217 Issue 3 (2013). Accessed November 6, 2025. https://joe.bioscientifica.com/view/journals/joe/217/3/R25.xml?body=contentSummary-10171

  62. Holick MF. Vitamin D Status: Measurement, Interpretation, and Clinical Application. Ann Epidemiol. 2009;19(2):73-78. doi:10.1016/j.annepidem.2007.12.001

  63. Vitamin D testing and treatment: a narrative review of current evidence in: Endocrine Connections Volume 8 Issue 2 (2019). Accessed November 6, 2025. https://ec.bioscientifica.com/configurable/content/journals$002fec$002f8$002f2$002fEC-18-0432.xml?source=post_page—–8b7fff9b56e8———————-&t:ac=journals%24002fec%24002f8%24002f2%24002fEC-18-0432.xml

  64. George-Gay B, Parker K. Understanding the complete blood count with differential. J Perianesth Nurs. 2003;18(2):96-117. doi:10.1053/jpan.2003.50013

  65. El Brihi J, Pathak S. Normal and Abnormal Complete Blood Count With Differential. In: StatPearls. StatPearls Publishing; 2025. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK604207/

  66. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Accessed November 6, 2025. https://www.mdpi.com/2072-6643/8/7/405?utm_source=jaquishbiomedical.com&utm_medium=referral

  67. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Accessed November 6, 2025. https://www.mdpi.com/2072-6643/10/11/1564?utm_campaign=HI_max-gains-reviews

  68. Glycine - an important neurotransmitter and cytoprotective agent - Gundersen - 2005 - Acta Anaesthesiologica Scandinavica - Wiley Online Library. Accessed November 6, 2025. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-6576.2005.00786.x

  69. Brosnan ME, Brosnan JT. Histidine Metabolism and Function. J Nutr. 2020;150:2570S-2575S. doi:10.1093/jn/nxaa079

  70. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update | Nutrition Research Reviews | Cambridge Core. Accessed November 6, 2025. https://www.cambridge.org/core/journals/nutrition-research-reviews/article/effects-of-branchedchain-amino-acids-on-muscle-protein-synthesis-muscle-protein-breakdown-and-associated-molecular-signalling-responses-in-humans-an-update/9912227DD5144B0F7EB06260029520D7

  71. Journal of the American College of Surgeons. Accessed November 6, 2025. https://journals.lww.com/journalacs/fulltext/2008/09000/olive_oil,_the_mediterranean_diet,_and.15.aspx

  72. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Accessed November 6, 2025. https://www.mdpi.com/2072-6643/13/7/2421

  73. Pilotto A, Zipser CM, Leks E, et al. Phenylalanine Effects on Brain Function in Adult Phenylketonuria. Neurology. 2021;96(3):e399-e411. doi:10.1212/WNL.0000000000011088

  74. Kapoor B, Kapoor D, Gautam S, Singh R, Bhardwaj S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr Nutr Rep. 2021;10(3):232-242. doi:10.1007/s13668-021-00363-3

  75. Salter AM. Dietary fatty acids and cardiovascular disease. Animal. 2013;7:163-171. doi:10.1017/S1751731111002023

  76. Khalil B, Rosani A, Warrington SJ. Physiology, Catecholamines. In: StatPearls. StatPearls Publishing; 2025. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK507716/

  77. About Olink — Olink®. Accessed November 6, 2025. https://olink.com/about/about-olink

  78. Chen Z, Gao J, Sun J, Wu Z, Wang B. Aminoacylase 1 (ACY-1) Mediates the Proliferation and Migration of Neuroblastoma Cells in Humans Through the ERK/Transforming Growth Factor β (TGF-β) Signaling Pathways. Med Sci Monit Int Med J Exp Clin Res. 2021;27:e928813-1-e928813-8. doi:10.12659/MSM.928813

  79. Basiri M, Pahlavanneshan S. Evaluation of Placental Alkaline Phosphatase Expression as A Potential Target of Solid Tumors Immunotherapy by Using Gene and Protein Expression Repositories. Cell J Yakhteh. 2021;23(6):717-721. doi:10.22074/cellj.2021.7299

  80. Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med Berl Ger. 2016;94(7):739-746. doi:10.1007/s00109-016-1427-y

  81. Sokol CL, Luster AD. The Chemokine System in Innate Immunity. Cold Spring Harb Perspect Biol. 2015;7(5):a016303. doi:10.1101/cshperspect.a016303

  82. EDA2R ectodysplasin A2 receptor [Homo sapiens (human)] - Gene - NCBI. Accessed November 6, 2025. https://www.ncbi.nlm.nih.gov/gene/60401

  83. EFNA4 ephrin A4 [Homo sapiens (human)] - Gene - NCBI. Accessed November 6, 2025. https://www.ncbi.nlm.nih.gov/gene/1945

  84. Hao X, Zhang Z, Kong J, et al. Hypothesis paper: GDF15 demonstrated promising potential in Cancer diagnosis and correlated with cardiac biomarkers. Cardio-Oncol. 2024;10:56. doi:10.1186/s40959-024-00263-9

  85. Yang Z, Wang KKW. Glial Fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364-374. doi:10.1016/j.tins.2015.04.003

  86. Durai R, Davies M, Yang W, et al. Biology of insulin-like growth factor binding protein-4 and its role in cancer (review). Int J Oncol. 2006;28(6):1317-1325.

  87. Cocito C, Xiang C, Huang M, et al. Immunoglobulin superfamily 3 (Igsf3) function is dispensable for brain development. Sci Rep. 2025;15(1):6526. doi:10.1038/s41598-024-79349-4

  88. Doudney K, Murdoch JN, Braybrook C, et al. Cloning and Characterization of Igsf9 in Mouse and Human: A New Member of the Immunoglobulin Superfamily Expressed in the Developing Nervous System. Genomics. 2002;79(5):663-670. doi:10.1006/geno.2002.6757

  89. KRT18 keratin 18 [Homo sapiens (human)] - Gene - NCBI. Accessed November 6, 2025. https://www.ncbi.nlm.nih.gov/gene/3875

  90. Coppens S, Lehmann S, Hopley C, Hirtz C. Neurofilament-Light, a Promising Biomarker: Analytical, Metrological and Clinical Challenges. Int J Mol Sci. 2023;24(14):11624. doi:10.3390/ijms241411624

  91. Katz JM, Tadi P. Physiology, Plasminogen Activation. In: StatPearls. StatPearls Publishing; 2025. Accessed November 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK539745/

  92. Bingle L, Cross SS, High AS, et al. WFDC2 (HE4): A potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Respir Res. 2006;7(1):61. doi:10.1186/1465-9921-7-61

  93. Calcium and its Role in Human Body. Accessed November 6, 2025. https://www.researchgate.net/publication/274708965_Calcium_and_its_Role_in_Human_Body

  94. Farag MA, Reda A, Nabil M, Elimam DM, Zayed A. Evening primrose oil: a comprehensive review of its bioactives, extraction, analysis, oil quality, therapeutic merits, and safety. Food Funct. 2023;14(18):8049-8070. doi:10.1039/D3FO01949G

  95. de Roos B, Geelen A, Ross K, et al. Identification of potential serum biomarkers of inflammation and lipid modulation that are altered by fish oil supplementation in healthy volunteers. PROTEOMICS. 2008;8(10):1965-1974. doi:10.1002/pmic.200700457

  96. Xu X, Wei W, Jiang W, et al. Association of folate intake with cardiovascular-disease mortality and all-cause mortality among people at high risk of cardiovascular-disease. Clin Nutr. 2022;41(1):246-254. doi:10.1016/j.clnu.2021.11.007

  97. Scholl TO, Johnson WG. Folic acid: influence on the outcome of pregnancy1234. Am J Clin Nutr. 2000;71(5):1295S-1303S. doi:10.1093/ajcn/71.5.1295s

  98. Ried K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review12. J Nutr. 2016;146(2):389S-396S. doi:10.3945/jn.114.202192

  99. Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, Acosta-Olivo CA, Peña-Martínez VM, Simental-Mendía LE. Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials. Rheumatol Int. 2018;38(8):1413-1428. doi:10.1007/s00296-018-4077-2

  100. Camaschella C. Iron deficiency. Blood. 2019;133(1):30-39. doi:10.1182/blood-2018-05-815944

  101. Biesalski HK, Tinz J. Multivitamin/mineral supplements: Rationale and safety - A systematic review. Nutrition. 2017;33:76-82. doi:10.1016/j.nut.2016.02.013

  102. Chowdhury R, Stevens S, Gorman D, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ. 2012;345:e6698. doi:10.1136/bmj.e6698

  103. Del Brutto OH, Mera RM, Gillman J, Zambrano M, Ha J eun. Oily Fish Intake and Cognitive Performance in Community-Dwelling Older Adults: The Atahualpa Project. J Community Health. 2016;41(1):82-86. doi:10.1007/s10900-015-0070-9

  104. Gorini F, Sabatino L, Pingitore A, Vassalle C. Selenium: An Element of Life Essential for Thyroid Function. Molecules. 2021;26(23):7084. doi:10.3390/molecules26237084

  105. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of Vitamin A in the Immune System. J Clin Med. 2018;7(9):258. doi:10.3390/jcm7090258

  106. Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD. Dietary supplements and disease prevention — a global overview. Nat Rev Endocrinol. 2016;12(7):407-420. doi:10.1038/nrendo.2016.54

  107. Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. doi:10.3390/nu9111211

  108. Stechschulte SA, Kirsner RS, Federman DG. Vitamin D: Bone and Beyond, Rationale and Recommendations for Supplementation. Am J Med. 2009;122(9):793-802. doi:10.1016/j.amjmed.2009.02.029

  109. Lee GY, Han SN. The Role of Vitamin E in Immunity. Nutrients. 2018;10(11):1614. doi:10.3390/nu10111614

  110. Rautiainen S, Manson JE, Lichtenstein AH, Sesso HD. Dietary supplements and disease prevention — a global overview. Nat Rev Endocrinol. 2016;12(7):407-420. doi:10.1038/nrendo.2016.54

  111. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-285. doi:10.1016/j.autrev.2014.11.008

  112. Quit Tobacco How To Quit Smoking or Smokeless Tobacco. Accessed November 12, 2025. https://www.cancer.org/cancer/risk-prevention/tobacco/guide-quitting-smoking.html
  113. Puri V, Nagpal M, Singh I, et al. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients. 2022;14(21):4637. doi:10.3390/nu14214637

  114. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. Am J Epidemiol. 2017;186(9):1026-1034. doi:10.1093/aje/kwx246